Phytochemistry and Pharmacological Activities of *Lagenaria breviflora*: A Review

Orisakeye OT¹, Johnson J¹

Department of Chemistry, Afe Babalola University, Ado-Ekiti, Nigeria

*Corresponding author: Dr. Orisakeye OT, Department of Chemistry, Afe Babalola University, Ado-Ekiti, Nigeria,
Tel: +234 8037400826; Email: jumokeye@gmail.com

Received: 04-27-2015
Accepted: 05-20-2015
Published: 06-19-2015

Copyright: © 2015 Orisakeye

Abstract

Lagenaria Breviflora is from the family Cucurbitaceae. Traditionally, it is useful in the treatment of human measles, digestive disorders and as wound antiseptics. The phytoconstituents present in the plant include triterpenoids, curcubitacin etc. Pharmacological study reported the anti-implantation, anti-bacterial, antiulcer, anti-inflammatory, antioxidant, Miracidal and Cerclidal activity and antifertility. This review is an attempt to pin-point unexplored potential of the plant for further research.

Keywords: *Lagenaria Breviflora*; Phytochemistry; Pharmacological Activities

Introduction

Lagenaria breviflora (Benth.) is from the tribe Benincaseae and from the family Cucurbitaceae [1]. It is also known as squash family. Its from the genus Lagenaria which has seven species viz: *Lagenaria abyssinica, Lagenaria guineensis, Lagenaria rufa, Lagenaria siceraria, Lagenaria sphaerica, Lagenaria vulgaris*. It synonyms are *Adenopus* Benth, *Sphaerocycos* Hook. F [1].

English wild colocynth (Ainslie). French calebasse tigrée (Berhaut). SENEGAL: BASARI a-kása-kása (Ferry) BEDIK gínyudűn (Ferry) DIOLA é sigir (JB) ku batak (JB) FULA-PULALAA (Senegal) děnni biram dau, děnni: water melon (A. Chev.) MANDING-BAMBARA ka bâ na ni (JB) SERER mbomb (JB) THE GAMBIA: DIOLA-FLUP é sigir = heart (DF) kufatak = lamb (DF) GHANA: AKAN-TW1 asämän-akýêkyêa = spirit’s water melon (FRI) ANYI-AOWIN aboa ngate (FRI) SEHWI aboa-ngate (FRI) GA ânûwàtče (FRI; KD) NZEMA aboa-ngate = leopard’s groundnut, from the blotched fruit (FRI) NIGERIA: HAUSA gojin jima, gunar jîima, jîima: to tan (JMD; ZOG) IGBO ânyújímọọ = anyu of the spirits (Singha); any plant qualified by ọmọọ: spirits, dead, is inedible, as opposed to another which is eaten (KW) uriem (BNO) YORUBA eso gbegbe, eso: fruit (IFE) eso gbo ayaba the seed (IFE) ito (JRA) tagiiri (auctt.) [1].

The plant, and especially the fruit of *Lagenaria breviflora* is widely used in folklore medicine in West Africa as a herbal remedy for the treatment of human measles, digestive disorders, and as wound antiseptics (e.g. umbilical incision wound), while livestock farmers use it for Newcastle disease and coccidiosis treatment in various animal species, especially poultry. The present review provides detail information of the plant exploring its ethnopharmacological uses, phytochemical and pharmacological studies conducted on *L. breviflora* and also pinpoints unexplored potential of it.

Phytochemical analysis

The fruit pulp of *L. breviflora* was also reported to possess phenolic acids, while p-hydroxybenzoic and vanillic acids...
were found to occur as free and bound acids in the pulp, ferulic acid was also found to occur only as an ester [2]. Elujoba and Alfy also provided morphology as well as the ash values and solvent extractive values of the fruit of Lagenaria breviflora Robert for proposed African Pharmacopoeia. Standard phytochemical methods were used to test the presence of saponins, alkaloids, tannins, anthraquinones, cardiac glycosides, cyanogenic glucosides and flavonoids [3]. Analysis of the phytochemical contents of L. breviflorain methanolic solvent showed enhanced reducing sugar, anthraquinone and terpenoids whereas flavonoids, tannins and alkaldoids were least and saponin and cyanogenic glucoside were absent [4]. Curcurbitacin was isolated from the plant which is responsible for its anti-inflammatory and analgesic activities [5]. From the methanol extract of fruit pulp, 3 new saponins were characterized as 3-0-β-galactopyranosyl 28-O-β-xylopyranosyl(1→4)-α-rhamnopyranosyl(1→3)-β-xylopyranosyl(1→3)-α-arabinopyranosylean-12-en-28-oic acid ester, 3-0-β-galactopyranosyl 28-0-β-galactopyranosyl(1→4)-α-rhamnopyranosyl(1→3)-β-xylopyranosyl (1→3)-α-arabinopyranosylean-12-en-28-oic acid ester, and 3-0-β-galactopyranosyl 28-0-α-arabinopyranosyl(1→6)-β-galactopyranosyl(1→4)-α-rhamnopyranosyl(1→3)-β-xylopyranosyl (1→3)-α-arabinopyranosylean-12-en-28-oic acid ester. Oleanolic acid and 3-O-acetyloleanolic acid were identified from the hydrolytic products of the pulp [2]. The results of phytochemical analysis indicate that the extract contains saponins (triterpenoids) [6,7].

Antibacterial activity

Its antibacterial activity was determined by Tomori et.al using agar-well diffusion method and expressed as the average diameter of the zone of inhibition of bacterial growth around the wells. The effect of the extract was compared with that of the two standard antibiotics (ofloxacin and erythromycin) used. The difference of the means was considered significant at p< 0.05 using Student t-test. The extract potently inhibited the growth of all the bacterial colonies studied. This inhibitory effect was also dose dependent. Tomori et.al also further reported the antibacterial effect of L. breviflora to have a broad spectrum activity because it inhibited the growth of Gram positive bacteria (B. subtilis and S. aureus) and that of Gram negative bacteria (S. gallinarum, P. aeruginosa, Klebsiella, Proteus and E. coli). Compared with standard antibiotics, the extract had moderate activity. While ofloxacin was observed to be significantly (p< 0.05) more potent than the extract for all the bacteria species studied, the extract was itself more potent than erythromycin on all the bacteria species; P. aeruginosa, S. aureus and Proteus sp were not even sensitive to erythromycin at all in his study. The degree of inhibition by the plant extract varies from one bacteria colony to the other [8]. Extracts of L.breviflora was able to exhibit higher antimicrobial property against S. typhi, P. fluorescens and Salmonella typhi while S. dysenteriae was the least affected [4].

Anti-inflammatory activity

The anti-inflammatory activity of the aqueous leaf extract of the plant was assessed using carrageenan-induced paw edema and histamine-induced paw edema in rats. The analgesic effect was determined using the acetic acid writhing method as well as formalin test in mice. Our results showed that the extract at 100 and 200 mg/ kg body weight significantly reduced the formation of the oedema induced by carrageenan and histamine. In the acetic acid-induced writhing model, the extract showed a good analgesic effect characterized by reduction in the number of writhes when compared to the control. The extract caused dose-dependent decrease of licking time and licking frequency in rats injected with 2.5% formalin, signifying its analgesic effect. These results were however less than those of indomethacin, the reference drug used in this study. Since the plant extract reduced significantly the formation of oedema induced by carrageenan and histamine, as well as reduced the number of writhes in acetic acid-induced writhing models and dose-dependent decrease of licking frequency in rats injected with 2.5% formalin, the results have validated the basis for the traditional use of Lagenaria breviflora against inflamed purulent wounds, swellings, and bruises seen in some infectious diseases such as New Castle disease [3]. Onasanwo also reported its anti-inflammatory properties of the ethanolic extract . Analgesic activity was also measured with its analgesic activity. There were significant inhibition effect in each of the test [9,10].

Anti –implantation activity

The fruit of Lagenaria breviflora Robert (Adenopus breviflorus Benth) family Cucurbitaceae used by natives as an abortifacient in Nigeria, was investigated for anti-implantation activity. The ethyl acetate extract of the whole fruit and methanol extract of the seed were very toxic to rats. Using ten female virgin albino rats for each extract, the World Health Organization special protocol and doses on a moisture-free basis: 20 g/ kg whole fruit methanol extract gave 60% anti-implantation activity, 2.5 g/kg fruit pulp gave 80% and 5 g/kg fruit pulp gave 100% activity while 2 g/kg seed also gave 100% activity but four of the rats died. Statistical evaluation of the data showed that the results were significant [11].

Miracidal and Cercidial activity

Experiments were conducted on the miracidal and cercarial activity of various concentrations of the methanolic extracts of the seed and pulp of Lagenaria breviflora on Schistosoma mansoni miracidia and cercariae using the methanolic extract of Tetrapleura tetraptera (Aridan) as control, 1mg/ml of aridan, the seed and pulp extracts of L. breviflora each re-
sulted in a 100% kill of both the miracidia and cercariae at 60 minutes. At this same exposure period, lower concentrations (0.25 mg/ml) of Aridan, seed and pulp extracts of L. breviflora eliminated 0%, 100% and 40% of the miracidia respectively. Lower concentrations (0.125 mg/ml) of the extracts of the seed and pulp of L. breviflora eliminated 100% and 80% of the cercariae respectively. Higher concentrations of these extracts were potently miracidical and cerceridal. The results obtained indicate that the use of the methanolic extracts of Lagenaria breviflora as miracidical and cerceridal substances even at concentrations lower than that of the control (Aridan), a known miracidical and cerceridal agent, will be an additional effective agent in the control of the transmission of schistosomiasis.

Antifertility activity

The sperm cell count, motility, live/dead sperm cell ratio, morphology, and the seminal volume were used in this study to evaluate the effect of prolonged administration of L. breviflora Roberton male reproductive system using the Wistar rat as animal model [12].

Antioxidant activity

Lagenaria breviflora possess hepatoprotective, antiulcerogenic and antioxidative activity. Findings suggest that the extract exerts its antiulcerogenic activity via antioxidative mechanism, there by stalling ravaging effects of reactive oxygen species [13]. Ethanolic extract of the whole fruit of Lagenaria breviflora was assessed using the cold-restraint stress-induced (CRU) gastric ulcer, aspirin-induced (ASP) gastric ulcer and alcohol-induced (AL) gastric ulcer models [9,10]. 150mg/kg b.w of the plant extract protected against the PI gastric ulcer, ASP gastric ulcer and AL gastric ulcer. The in vitro antioxidant activity was demonstrated by its ability to quench free radicals generated by nitric oxide and superoxide anion with a concomitant scavenging potential against DPPH-induced radical formation [9,10].

Conclusion

LB has been employed ethnomedicinally as therapeutic cure for a variety of diseases. This has been helpful in correlating its uses traditionally with some of its scientific proven activity like antioxidant,antiulcerogenic, antibacterial and many other activities. It is reported to contain saponins of which triterpenoids, curcurbitacin, cardiac glycosides, flavonoids which may be responsible for the different biological activities. Hence, only saponins were isolated and characterized which in turn call for more isolation and characterization of active phytochemicals with bioactivity. Characterization can be done to improve on some phytopharmaceuticals which in turn can be used as lead molecules for synthesizing novel organic compounds having good therapeutic activity. Elucida tion of mechanism of action of the isolated compounds and clinical trial are much needed. So also more activities such as antihypertensive, antiviral and anticholinesterate could also be done and especially its nutritional effect on the body.

References

10. Onasamno SA, Saba AB, Oridupa OA, Oyagbemi AA, Owoyele BV. Anti-nociceptive and anti-inflammatory properties

