Is Sperm Hyaluronidase Indispensable in Mammalian Fertilization?

Ekyune Kim*

College of Pharmacy, Catholic University of Daegu, Gyeongsan 712-702, Republic of Korea

*Corresponding author: Dr. Ekyune Kim, College of Pharmacy, Catholic University of Daegu, Gyeongsan 712-702, Republic of Korea, Tel: +82-53-850-3619; Fax: +82-53-850-3602; Email: ekyune@cu.ac.kr

Received: 07-10-2015
Accepted: 09-09-2015
Published: 10-08-2015

Copyright: © 2015 Ekyune

Abstract

Fertilization involves several precisely coordinated steps, including sperm dispersal of the oocyte cumulus mass, adhesion and binding to the zona pellucida, penetration through the zona pellucida, and fusion with the oocyte. Hyaluronidase, which is present in the sperm head, is known to be essential for the decomposition of the oocyte cumulus mass. Interestingly, two types of hyaluronidase—SPAM1 and —Hyal5 have been discovered in rodents, while only SPAM1 has been reported in other mammals such as pigs and humans. SPAM1 localizes to the plasma membrane of the sperm, while Hyal5 is present on the plasma and the outer acrosomal membranes. Male mice lacking either one of these two hyaluronidases can fertilize normally, suggesting that neither SPAM1 nor Hyal5 is essential for fertilization in mice. Although it has been 30 years since the discovery of hyaluronidase, its role in fertilization remains unclear. This review focuses on whether hyaluronidase is essential for fertilization in mammals.
However, the expression pattern of SPAM1 in tissues is a bit controversial, largely because of the lack of agreement between the results of RT-PCR and Western blot. RT-PCR results suggest it to be expressed in prostate, placenta and the testis although Western blot analysis indicated that SPAM1 was expressed specifically in the testis [12]. Furthermore, IVF inhibition assay using recombinant protein and antibody against SPAM1 revealed that it is involved in the decomposition of the cumulus mass and the binding of sperm with the ZP surrounding the egg [12]. Many researchers believed that male SPAM1 knock-out mouse would be infertile. However, a female mouse mated with the knock-out male mouse produced offspring normally, except for the gestation period being longer by one day [13]. Thus, contrary to expectations, SPAM1 was confirmed to be inessential for fertilization in mice. Kim et al. [14] discovered a new hyaluronidase, Hyal5, in the sperm of SPAM1 knock-out mouse. Hyal5 was found to have several similarities with SPAM1.

![Figure 1](image-url)

Figure 1. The chromosomal orientation of the six hyaluronidase gene clusters between mouse and human. A. Somatic hyaluronidases. B. Reproductive hyaluronidases. TM, telomere; CM, centromere. Closed boxes represent hyaluronidase genes on the genomic region.

The Hyal5 gene was found to be next to the SPAM1 gene on chromosome 6 [14]. Hyal5 is a 55-kDa protein, slightly larger than the 52-kDa SPAM1. The expression of Hyal5 is specifically restricted from testicular germ cells to ejaculated sperm in mice, and it is thought to contain a GPI anchor protein that includes hyaluronidase and ZP-binding domains [14]. SPAM1 and Hyal5 exhibit many parallel traits, including similar amino acid sequences, chromosomal location, and protein expression patterns [15]. However, unlike SPAM1, which exists on the surface of sperm, Hyal5 exists on the surface of sperm as well as the outer acrosomal membrane, suggesting that the two hyaluronidases may play different roles during fertilization. In addition, the hyaluronidase activity of Hyal5 is much higher than that of SPAM1 [14]. Although essential for germ cell-specific hyaluronidase functions, the precise roles of SPAM1 and Hyal5 remain unclear. Hyal5 is also different from mouse SPAM1 in several aspects. Hyal5 only exists in rodents, while PH-20 exists in all mammals. Hyal5 has cysteine common to sperm hyaluronidase. However, it has more glutamic acid, which is a potential sugar chain-binding site. Zymography analysis showed that SPAM1 of large animals such as pigs, bulls, and horses has a very high activation [16], unlike the hyaluronidase of rodents such as mouse. Mouse SPAM1 is known to be a double-chain protein that can be cut inside by a site called Arg346–Ala347 connected with covalently linked disulfide bridges. However, the potential cutting site is replaced by Thr347-Met348 in Hyal5 [14]. Therefore, Hyal5 is different from SPAM1 structurally, thus influencing the degree of activation.

Hyal5 knock-out male mouse was generated by Kimura et al. in 2009 [17]. Unexpectedly, although the ability to disperse the cumulus cell mass was reduced, these mice carried a null mutation in the Hyal5 gene, were fertile. Experiments on knock-out mice showed that SPAM1 and Hyal5 function complementarily.

Conclusion

Many earlier studies suggested that SPAM1 is the only hyaluronidase in mammalian sperm, including that of guinea pigs, rats, macaques, humans, pig, and bull. In addition, although SPAM1 was thought to be essential for sperm penetration and dispersal of the cumulus cell mass surrounding the ovulated oocyte, sperm of SPAM1 knock-out mouse could penetrate the cumulus matrix, although the dispersal was delayed. Hyal5 is a newly identified rodent-specific sperm hyaluronidase, and Hyal5-deficient epididymal sperm were functionally normal. Therefore, no conclusion can be made on whether sperm hyaluronidase is essential for fertilization in mammals. To confirm their role, experiments should be conducted in male double-knockout mice lacking both genes.

Acknowledgements

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (NRF-2013R1A1A2010269), Republic of Korea.

References

Cite this article: Kim E. Is Sperm Hyaluronidase Indispensable in Mammalian Fertilization?. J J Vet Sci Res. 2015, 1(4): 020.

